Exponential Attractors for Non-autonomous Dissipative System
نویسندگان
چکیده
In this paper we will introduce a version of exponential attractor for nonautonomous equations as a time dependent set with uniformly bounded finite fractal dimension which is positively invariant and attracts every bounded set at an exponential rate. This is a natural generalization of the existent notion for autonomous equations. A generation theorem will be proved under the assumption that the evolution operator is a compact perturbation of a contraction. In the second half of the paper, these results will be applied to some non-autonomous chemotaxis system.
منابع مشابه
Pullback D-attractors for non-autonomous partly dissipative reaction-diffusion equations in unbounded domains
At present paper, we establish the existence of pullback $mathcal{D}$-attractor for the process associated with non-autonomous partly dissipative reaction-diffusion equation in $L^2(mathbb{R}^n)times L^2(mathbb{R}^n)$. In order to do this, by energy equation method we show that the process, which possesses a pullback $mathcal{D}$-absorbing set, is pullback $widehat{D}_0$-asymptotically compact.
متن کاملStrong Uniform Attractors for Non-autonomous Dissipative Pdes with Non Translation-compact External Forces
We give a comprehensive study of strong uniform attractors of non-autonomous dissipative systems for the case where the external forces are not translation compact. We introduce several new classes of external forces which are not translation compact, but nevertheless allow to verify the attraction in a strong topology of the phase space and discuss in a more detailed way the class of so-called...
متن کاملPullback Attractors for Non-autonomous Parabolic Equations Involving Grushin Operators
Using the asymptotic a priori estimate method, we prove the existence of pullback attractors for a non-autonomous semilinear degenerate parabolic equation involving the Grushin operator in a bounded domain. We assume a polynomial type growth on the nonlinearity, and an exponential growth on the external force. The obtained results extend some existing results for non-autonomous reaction-diffusi...
متن کاملStochastic representation of chaos using terminal attractors
A nonlinear version of the Liouville equation based upon terminal attractors is proposed for describing post-instability motions of dynamical systems with exponential divergence of trajectories such as those leading to chaos and turbulence. As a result, the post-instability motions are represented by expectations, variances, and higher moments of the state variables as functions of time. The pr...
متن کاملAttractors of strongly dissipative systems
A class of infinite-dimensional dissipative dynamical systems is defined for which there exists a unique equilibrium point, and the rate of convergence to this point of the trajectories of a dynamical system from the above class is exponential. All the trajectories of the system converge to this point as t → +∞, no matter what the initial conditions are. This class consists of strongly dissipat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2017